A STEM State of Mind: No Magic Kit or Subscription Required

Image: Getty / Brain STEM

STEM programmes and flashy subscriptions are not necessary to drive STEM education

Written by: Andrew B. Raupp / @stemceo

When you think of the acronym ‘STEM’ or, to be more specific, when you think of STEM education in practice, what are you actually imagining? Be honest, now.

Allow your mental landscape to fill up with robots, online games or a slick subscription service packed with apps that promise a complete transformation of students into budding tech industry gurus or ‘STEMers’.

If your mental map is filled with smartphones and coding apps, you’re not alone, and you’re also not wrong to be intimidated by what looks like quite an expensive and complicated approach to put into practice.

But here’s the thing: truly sustainable and meaningful STEM initiatives are multidimensional and include all aspects of STEM, not just the shiniest bells and whistles that our current technology can make available.

A real commitment to STEM is less about a certain product or approach but rather, it’s a dedication to truly valuing the liberal arts and sciences, which, of course, includes the life sciences as well as robust critical-thinking skills. And the real kicker? These are the kind of educational experiences that talented teachers have been engaging their students in already for decades now.

So, how can boots-on-the-ground educators sort out the tools that will help them leverage their existing materials and pedagogy to make their STEM offerings truly effective and meaningful to students?

For starters, we might first take a look at where the current influence on STEM programming originates, and take some time to reframe what STEM education can really look like in practice, in all classrooms, and for all students, not just the privileged few.

The pipeline pressure

In a 2015 piece on the changing landscape of STEM education, dean of Georgia Tech, Gary S May, reiterates the common opinion that the foundation of current STEM initiatives is born out of a commitment to creating a “larger, more skilled workforce in STEM areas … [by] preparing and encouraging more youth to pursue these fields at a time when they were less inclined to do so, and to provide more support and training for teachers in the subjects”.

May makes clear his belief in this strategy, and warns against potentially “watering down” the focus on the four STEM subject areas of science, technology, engineering and mathematics to include the arts and other less ‘hard’ STEM subjects.

While his point is well made, May does not address one of the most concerning factors influencing modern STEM education efforts, which is the tremendous external pressures that the financial industry, technology sector and NGOs are beginning to play, ostensibly altering its future.

Heidi J Stevenson, writing in the journal Issues in Teacher Education, notes that in addition to increased federal funding to public schools, US “venture capitalists have responded to political appeals and are investing 80pc more in STEM education than in 2005”.

Stevenson goes on to ask an important question, and one that we should all be considering when assessing our curriculum planning and materials: “Are these STEM-aiding entities’ motives purely altruistic or profit-driven?”

When we look at efforts from industry attempting to help boost STEM education efforts to fuel the talent pipeline, some additional concerns also emerge.

A thorough 2015 piece in TechCrunch examines some of the takeaways regarding gender discrimination in both tech and venture capital fields.

Image: Getty / STEM State of Mind

 

The lack of diversity is often cited as a primary motivator for fuelling STEM educational programmes aimed at recruiting more women and students of colour into the STEM pipeline but this piece makes clear that one of the key barriers to more inclusive workplaces is the reality that “the lack of diversity in venture capital boardrooms is far more than a STEM pipeline issue”.

Providing flashy STEM education products to educators with the goal of training and recruiting underrepresented students sounds great at first glance. But if the tech sector doesn’t actually address the persistent top-down issues that create barriers for those students once they are actual applicants, then this approach is sorely misguided.

Mindset shift v ‘magic wand’

Increased financial resources for students and schools are always welcome but when it comes to STEM initiatives, it’s important to take a critical stance when off-the-shelf programmes are sold too aggressively as a kind of pricey ‘magic wand’.

Experienced educators know that the real foundation of STEM education requires critical-thinking skills, hands-on engagement, and opportunities to explore the natural world through trial and error, research and reflection, and genuine interest and curiosity in the problems — and potential solutions — of our shared planet.

When pedagogical materials come directly from companies whose sole focus is building up their workforce, and potentially their bottom line, it’s unclear if their commitment to true learning comes before their profit margin.

Audrey Watters of Hack Education explores this question in a 2015 blogpost, and she sums up many of the concerns of venture capital funding for STEM initiatives thusly: “So, when we ask, ‘Who’s investing in edtech?’, we can’t simply look at the dollar flow for our answer.

“We need to pause and consider why this narrative casts innovation as something that happens outside of education institutions … why it’s focused on venture capital, for example, and why it’s focused on start-ups and not schools.”

A more sustainable approach to STEM education should obviously happen within our schools, and should rely on robust training for educators who are looking to add to their already diverse set of pedagogical skills.

In addition, students should be given real opportunities to engage in hands-on activities that require knowledge and application of skills in science, technology, engineering and mathematics, and not just plopped in front of the latest software.

Today’s entrepreneurs and corporations have the power to create beautiful, engaging programmes, but when it comes to building a sustainable grassroots movement designed to reach all students in schools globally, encouraging them to become stronger critical-thinkers and problem-solvers, there’s most likely never going to be an app or kit for that.

This article was originally featured in Silicon Republic on November 6th, 2017.


Andrew B. Raupp is the Founder / Executive Director @stemdotorg

“Democratizing science, technology, engineering and math (STEM) education through sound policy & practice…

What Does It Really Mean to Give Students an Equal STEM Education?

Image: Getty / Teacher Helping Students in Robotics Class

Can we really achieve STEM education equality by giving everyone the same thing?

Written by: Andrew B. Raupp / @stemceo

Language matters. This is especially true in the world of STEM education. The words we use to talk about the concepts, policies and content that underlie the education of a rising generation of global students truly have great import.

When we talk about giving students an ‘equal’ education, or an ‘equitable’ education, what are we really saying? How do these concepts differ from simply providing ‘an education’, and why must STEM education specifically pay attention to issues of equality and equity?

The answer is as simple as it is complicated. Excellent STEM education should be geared towards reaching all students across the globe, no matter their race, gender or country of origin.

To truly equip the next generation with the tools and skills needed to create innovative, durable solutions to the challenges of our modern world, we must build in systems and practices that ensure all students have access to quality education.

We must also, however, take a look at whether some students are starting just steps from the finish line while others haven’t even gotten to the racetrack.

Image: maroke/Shutterstock

Equality and Equity 101

For starters, are ‘equity’ and ‘equality’ the same thing when it comes to STEM education? Not quite.

A piece on the blog Think Inclusive provides an example that helps illustrate the difference between equality and equity in the classroom: “Students may see other students receiving supports, accommodations or modifications and feel wronged, not realising that the goal is for all students to work in their zone of proximal development.”

This example will be all too familiar to educators who deal with managing a classroom where differentiated instruction is the norm.

Sometimes shortened to ZPD, Vygotsky’s pedagogical concept of ‘zone of proximal development’ is a zone in which students can work with some guidance to move their skills beyond what they can do independently.

It is widely used as a framework for educators to support students with educational activities that help them move at a pace that is rigorous but accessible.

If two students have very different needs, then it certainly wouldn’t be equitable to provide them with equal assignments.

Rather, the educator has the responsibility to provide appropriate instructional supports so that students of all ability levels have equitable access to the learning objectives.

Another example, this one outside the realm of education, can also illustrate how approaches to true equity don’t necessarily mean that people receive the same services but, rather, appropriate services for their needs.

As noted in the 2017 European Commission report on gender equality, “in conflict-affected countries, displacement, economic insecurity and marred social networks lead to more unstable environments, increasing the risk of sexual violence. In countries like the Democratic Republic of Congo, the EU has since 2004 supported the work of the Panzi Hospital in meeting the full spectrum of needs of survivors of sexual violence, and women with severe obstetric injuries.”

In this example, the response to the issue of gender-based violence is not to provide the same supports to men and women in an effort to provide equality to both genders, but rather to look at the distinct issues affecting women and provide supports that respond to those gender-specific concerns.

Moving beyond equality to true educational justice

So, how do educators, administrators and those tasked with instructional design help move students beyond a place of mere equality to true educational justice?

As a recent article by author Joseph Levitan in the American Journal of Educationexplains, “in contrast to equality and equity, a just education is focused on ensuring that each student has the opportunities to find, figure out, and develop their skills and abilities based on their values and their communities’ values … It is about seeing students as agents in their own education who have rights and inherent abilities.”

This means that crafting STEM programmes and policies should take the whole person into account, and that includes any barriers that students experience as a result of their race, gender, ethnicity, ability, socioeconomic status and so on.

A 2016 report that examined the role of libraries in supporting STEM equity includes a literature review that summarises the barriers as well as possible recommendations for students from a range of protected classes.

For example, one citation notes a long list of supports that could help students from racial minority groups have more just access to STEM programming, which includes “summer bridge [programmes], mentoring, research and experience, tutoring, career counselling and awareness, learning centres, workshops and seminars, academic advising, financial support, and curriculum and instructional reform.”

Notice a trend? To provide equitable STEM education, many of these recommendations suggest enrichments that happen beyond the walls of the traditional classroom.

It’s clear that offering true equity in STEM education means that we must think outside of the box, and think about what true access really looks like for the students we serve.

If we rise to the task at hand, not only will we be doing the right and just thing for our planet’s youth, but we’ll also be looking out for our best economic interests in the long run.

The European Institute for Gender Equality has found a number of benefits to closing the gender gap in the STEM field.

Image: Getty / Happy Students

 

A recent summary of findings notes that “in monetary terms, closing the STEM gap leads to an improvement in GDP by €610bn to €820bn in 2050 … total EU employment would rise by 850,000 to 1.2m by 2050 … The new jobs are likely to be highly productive because women graduating from STEM often progress into high value-added positions in sectors such as information and communication or financial and business services.”

These are exciting times for progress, innovation and growth, and the actions we take today will have a major impact on our shared future. To succeed, we must bring all students along in our mission to create meaningful, dynamic STEM education — not just those who are already poised at the finish line, ready to take another lap.

This article was originally featured in Silicon Republic on April 2nd, 2018.


Andrew B. Raupp is the Founder / Executive Director @stemdotorg

“Democratizing science, technology, engineering and math (STEM) education through sound policy & practice…